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Within the framework of the study of coherent vortex structures as emerging in 
rotating, quasi- two-dimensional flows, the tripolar vortex is a relatively novel 
feature. It consists of a symmetric, linear arrangement of three patches of distributed 
vorticity of alternate signs, and the axis of this configuration rotates about the centre 
of the core vortex. This paper describes an experimental study of the formation of 
a tripole from an unstable axisymmetric vortex in a solidly rotating, homogeneous 
fluid. The flow is visualized by addition of dye, and is measured by streak 
photography of tracer particles. After digitization; the spatial distributions of the 
vorticity w and the stream function $ are calculated numerically, and ‘scatter plots’ 
of w versus $ are presented for the various stages in the tripole formation process. 
Owing to viscous effects (spin-down by the bottom Ekman layer and lateral 
entrainment of ambient fluid) the tripole shows an exponential decay, both in its 
rotation speed and its internal, relative flow. The comparison of the observed flow 
characteristics with a simple point-vortex model shows reasonable quantitative 
agreement. 

1. Introduction 
In contrast to three-dimensional turbulence, quasi-geostrophic or two-dimensional 

turbulence is characterized by a spectral flux of kinetic energy to larger scales of 
motion, usually referred to as the ‘inverse energy cascade ’. Phenomenologically, this 
is recognized in the emergence of coherent vortex structures from an initial state of 
randomly distributed vorticity. Two well-known types of coherent structures are (i) 
the single, circularly symmetric vortex (‘monopole ’) and (ii) the dipole, consisting of 
two closely packed counter-rotating vortices. The monopolar vortex has a non-zero 
angular momentum (if the swirl velocity is of the same sign everywhere), and - in the 
absence of any background flow, forcing and dissipation - it will be stationary in 
space. On the other hand, the vorticity distribution of the vortex dipole provides a 
self-propelling mechanism to this structure, which causes the dipole to propagate 
steadily in a direction defined by its axis of symmetry. In  other words, the dipole is 
characterized by a non-zero linear momentum, while its angular momentum is zero. 

Because of its relevance to large-scale geophysical flow systems, the dynamics of 
two-dimensional turbulence have been studied by an increasing number of 
investigators during the last decade. In particular the advent of powerful 
supercomputers made numerical simulations of this type of turbulence possible. For 
example, McWilliams (1984) describes the emergence of coherent vortex structures 
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302 G. J .  F .  van Heijst, R.  C. Kloosterziel and G. W .  M .  Williams 

in the numerically simulated viscous evolution of a two-dimensional flow from an 
initial state of randomly distributed vorticity : in these calculations the vorticity is 
observed to eventually become concentrated in isolated patches which show a 
gradual relaxation towards axisymmetry. Similar ‘ monopolar ’ vortices were also 
found in later numerical simulations with higher resolution, see e.g. Sadourny (1985), 
Benzi, Patarnello & Santangelo (1987, 1988) and Legras, Santangelo & Benzi (1988). 
These studies revealed that - in addition to vortex monopoles - dipolar vortices can 
emerge equally well during the evolution of the flow. 

Moreover, Legras et al. (1988) observed the emergence of a tripolar vortex 
structure in their numerical simulation of the flow evolving from an initial state of 
randomly distributed vorticity. This tripole consists of a compact linear arrangement 
of three patches of distributed vorticity: the central vortex has an elliptical shape 
and is adjoined at its longer sides by two weaker satellite vortices of signs opposite 
to that of the core vortex. The axis of alignment rotates about the centre of the 
vortex structure, in the same sense as the rotation in the core. By inspecting the 
literature (as described in some detail by Kloosterziel & van Heijst 1989), a few other 
examples of tripolar vortices were found that had not been explicitly referred to 
before. In  a numerical study of the evolution of circular two-layer Gaussian rings, for 
instance, Ikeda (1981) observed that perturbations corresponding to slightly 
elliptical (wavcnumber 2) deformation of the initial vortex could under certain 
circumstances result in a tripolar vorticity structure. Similar features were also 
found by Swenson (1987) in a numerical study of unstable monopolar vortices. These 
results were not recognized as being associated with the tripole as a novel coherent 
structure, whose explicit existence was described only recently in the paper of Legras 
et al. (1988). 

Independent of this numerical discovery of the tripole, laboratory experiments on 
barotropic vortices in a rotating fluid were carried out by the present authors, and 
these experiments confirmed the existence of the tripolar vortex in the real, physical 
world : under certain conditions barotropic vortices can become unstable, and show 
a gradual transition into a rotating vortex tripole. I ts  existence was first observed (by 
chance) in experiments carried out in 1984, but this experimental evidence of the 
tripole occurring as a stable vortex structure in a (quasi) two-dimensional flow was 
not published until 1989 (van Heijst & Kloosterziel 1989 and Kloosterziel & van 
Hcijst 1989). 

In the meantime, other numerical modellers performed detailed simulations of the 
instability of perturbed monopolar vortices, and this work provided more detailed 
information about the vorticity distribution within the vortex during its evolution 
towards the ultimate, stable tripolar state (Carton, Flier1 & Polvani 1989). Their 
numerical results appear to agree very well with the observations of the ‘real’ tripole 
as described by van Heijst & Kloosterziel (1989) and Kloosterziel & van Heijst 
(1989). The present paper is a continuation of the work reported in those papers, and 
presents more detailed characteristics of the tripolar vortex as measured in the 
laboratory experiments. The experimental technique as well as some general 
observations of the tripole formation are described in $2. Quantitative information 
about the vortex was obtained by digitizing the flow field, and $3  contains results of 
the observed spatial distributions of important flow properties such as the vorticity 
and stream function, as well as the observed tripole rotation speed, and the gradual 
decay of the tripole due t,o viscous effects. Although a t  this stage no complete 
analytical model of the tripolar vortex has been developed, a simple point-vortex 
model is described in $4, which appcars to capture fairly well the overall rotation of 
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the tripole. Some stability features are addressed in $5 ,  and $6 concludes with a 
summary of the major results presented in this study. 

2. Description of laboratory experiments 
2.1. Experimental arrangement 

The experiments were carried out in a large transparent tank (92.5 cm in diameter, 
with a maximal working depth of 30 cm), placed concentrically on a turntable whose 
angular speed SZ was continuously adjustable in the range (r10 r.p.m. The tank was 
filled with a layer of homogeneous fluid (ordinary tap water) with a kinematic 
viscosity u and layer depth H .  In  the majority of the experiments the fluid had a free 
surface, which was assumed to  be free of any stresses. After the table was set in 
motion, the fluid was allowed to spin-up until a state of solid-body rotation was 
reached. In  the majority of the experiments to  be discussed below, the experimental 
parameters had the following values : SZ x 0.5-1.0 rad/s and H x 15-20 cm. With a 
water temperature of typically 10-15 “C, the spin-up thus usually took about 40-50 
revolutions of the turntable. Both cyclonic and anticyclonic vortices were created by 
briefly stirring the fluid inside a thin-walled, circular, bottomless cylinder that  was 
placed a t  the centre of the rotating tank. After allowing the fluid to  reach a state of 
almost purely horizontal swirling motion, the cylinder was swiftly lifted vertically, 
thus releasing the vortex in the solidly rotating ambient fluid. The subsequent vortex 
motion was visualized by addition of dye to the fluid in the central cylinder before 
lifting it,  and the evolving flow was recorded photographically by a remote- 
controlled corotating camera mounted some distance above the free fluid surface. 
Quantitative information about the relative flow field was obtained by streak 
photography of small tracer particles floating on the free surface. The information 
thus obtained for the surface flows is representative of the fluid motion a t  lower 
levels, because a t  all stages after the vortex release the flow is observed to be 
essentially two-dimensional - an effect caused by the basic rotation of the fluid 
system. 

I n  some additional experiments (see Kloosterziel & van Heijst 1991) vortices were 
generated in an alternative way, viz. by the so-called ‘collapse technique’ which 
basically consists of the fluid level inside the inner cylinder being different from the 
outer fluid level. For example, in the case of the inner level lower than outside, the 
gravitational collapse occurring immediately after lifting of the cylinder results in a 
flow directed radially towards the rotation axis. Within typically one rotation 
period, however, this radial flow is deflected until a dynamically adjusted state of 
cyclonic swirling flow is reached, as can be understood from conservation of angular 
momentum. As in the case of a stirring-induced vortex, the flow in this adjusted state 
is governed by a balance between the Coriolis force, the centrifugal force and the 
pressure gradient force, a balance that is usually referred to as ‘gradient flow ’ (see 
Holton 1979). The vortices thus created are usually characterized by a radial 
vorticity distribution that is different from the vorticity profile associated with the 
stirring-induced vortices, and this may under certain circumstances lead to a 
different stability behaviour as is discussed in more detail by Kloosterziel &, van 
Heijst (1991a). The present paper focuses on vortices created by the stirring 
technique. 
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2.2.  Observations 

It was found in the laboratory experiments that the stirring-induced vortices 
eventually became unstable in all cases. As described by Kloosterziel & van Heijst 
(1989, 1991 a) ,  however, the cyclonic and anticyclonic vortices show a dramatically 
different instability behaviour : the anticyclonic stirring-induced vortex usually 
splits up into two dipoles moving in opposite directions away from the original 
vortex centre, whereas its cyclonic counterpart shows a transformation into a 
compact tripolar vortex. The emergence of such a cyclonic tripolar vortex in the 
laboratory was first reported by van Heijst & Kloosterziel(l989) and by Kloosterziel 
& van Heijst (1989). The tripole consists of an elongated cyclonic central vortex with 
two anticyclonic satellite vortices at  its longer sides; in addition, the axis of this 
tripolar vortex configuration is observed to rotate cyclonically. The formation of a 
tripole from an initially circularly symmetric vortex can be clearly seen on the plan- 
view photographs in figure 1 (plate 1). In this experiment the stirred fluid initially 
confined in the bottomless cylinder was coloured by addition of fluorescent dye. The 
first photograph (a) was taken shortly after the vortex was released in the solidly 
rotating ambient fluid by lifting this inner cylinder. In this stage shear-induced 
turbulent motion - or sometimes even overturning motions due to centrifugal 
instabilities if the Rossby number is very large (see Kloosterziel & van Heijst 1991 a) 
- occurred at the circumference of the vortex, as can be seen from the irregular edge 
of the green dye patch. In  the next stage, however, this small-scale motion vanishes 
and a regular smooth two-dimensional vortex flow is established (see figure 1 b). The 
irregularities at  the edge of the dyed region are seen to get smeared out by the shear 
flow at the vortex edge. Although this ‘smoothed’ vortex is initially circularly 
symmetric, it soon loses this symmetry, as can be seen in figure 1 (c). This asymmetry 
soon becomes more pronounced (figure 1 d ), and two anticyclonic satellite vortices 
are observed to arise along the longer sides of the now elliptical central vortex : the 
tripolar vortex is formed (figure 1 e, f ). The axis of the tripole rotates steadily about 
the centre of the core vortex, as can be seen by comparing the orientations of the 
tripole in the last two frames of figure 1. This rotation of the tripole is cyclonic. Once 
formed, the structure of the vortex does not change appreciably during a relatively 
long period of time. The Ekman layer at the tank bottom causes the vortex to spin- 
down, of course, and this effect is observed in the gradual slow-down of the flow and 
the decreasing angular speed of the tripole rotation. Viscous effects also induce 
changes in the vorticity distribution, but at all times the tripole structure persists. 
This scenario in fact could serve as a definition of a stable tripole. As will be discussed 
in $5,  depending on the precise initial conditions, unstable tripoles may form, which 
split up into two dipoles. 

In order to obtain quantitative information about the flow field, experiments were 
carried out in which the flow was visualized by small tracer particles floating on the 
free surface. For the purpose of contrast enhancement, the fluid was dyed with 
methylen blue such that the white particles show up as bright spots. Figure 2 shows 
a sequence of streakline photographs taken at  subsequent times during the transition 
from a circular, monopolar vortex to a stable, tripolar flow structure. As can be seen 
in figure 2 ( a ) ,  the initial cyclonic vortex has circular streamlines, but very soon it 
becomes slightly elliptical, while two weak anticyclonic satellite vortices develop at 
its sides (figure 2b, c ) .  Gradually, these satellites become more pronounced (figure 
2 d ,  e ) ,  finally resulting in a well-developed tripole vortex (figure 2 f ) .  As in figure 1, 
the rotation of the tripole is evident from a comparison of the alignment of the three 
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FIGURE 1. Plan-view photographs showing the formation of a tripolar vortex from an unstable cyclonic vortex 
produced by the ‘stimng technique’ (see text). The stirred fluid initially confined in the inner cylinder was 
dyed by addition of fluorescein. The photographs were taken at times (a) t = 1.25T, (b) 2.34T, (c) 4 .2r  (d) 
5.2r (e) 5.Wand U, 7.OTafter withdrawing the inner cylinder, with T=64 s the rotation period of the turn- 
table. Experimental parameters: f.2 = 0.98 rad/s, R= 18.2 cm, diameter of inner cylinder 2R0 = 20.0 cm. 

VAN HEIIST. KLOOSTERZIEL & WILLIAMS (hcing p.  304) 
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FIGURE 3. Plan-view photographs taken during the formation of a tripole from an unstable, initially 
monopolar cyclonic vortex. The experiment is essentially similar to the one shown in figure 1, but now the 
initial vortex is coloured with two different dyes: the core with Terasil Rot G, and the outer ring with 
fluorescein (yellow/green). The sequence clearly illustrates that the sateUites of the tripole consist of yellow- 
coloured fluid, i.e. of fluid initially confined to the outer ring of the monopolar vortex. The photographs were 
taken at (a) t = 3.9T, (b) 5.9T, (c) 7.5T, (d) 8.4T, (e) 10.3Tand U, 12.8Twith T = 6.4 s the rotation period 
of the turntable. Experimental parameters: R= 18 cm, 52 = 0.98 rad/s, 2R, = 11 cm. 

VAN HEIJST. KLCOSTERZIEL 81 WILLIAMS 
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(4 cf) 

FIGURE 2 .  A sequence of plan-view streakline photographs illustrating the formation of a tripolar 
vortex from an unstable cyclonic vortex. This initial monopolar vortex was created by locally 
stirring the fluid, without any confinement by an inner cylinder. The flow was visualized by small 
tracer particles floating on the free surface. The photographs were taken at (a) t = O.OT, ( b )  3.1T, 
(c) 4.7T, ( d )  6.3T, ( e )  7.OT and (f) 12.5T, with T = 6.4 s the rotation period of the turntable; the 
exposure times were (u) 0.5 s ,  (b-e) 1.0 s and (f) 2.0 s. Additional experimental parameters: Q = 
0.98 rad/s, H = 18.0 cm. 
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vortices on the consecutive photographs. By measuring the streak lengths, this 
visualization technique allows one to monitor the evolution of the velocity field and 
also to calculate the spatial distribution of the vorticity and other important flow 
parameters ; this will be discussed in the next section. 

In comparison with streak photography, flow visualization by adding dye has an 
important advantage in that it provides information about the redistribution of 
material elements during the evolution of the initial monopolar vortex to the 
ultimate tripole structure. In order to examine the formation of the satellite vortices, 
a few experiments were carried out in which the initial vortex was coloured with two 
different dyes. A typical result of such an experiment is shown in figure 3 (plate 2). 
As can be seen in figure 3(a) ,  the core of the initial vortex was coloured red (with 
Terasil Rot G ) ,  while the outer ring was dyed yellow/green with fluorescein. In the 
next two frames (figure 3b ,  c) the core of the vortex is observed to become 
increasingly elliptical, without any appreciable form changes in the yellow outer 
ring. In the next stage the tripole formation becomes evident, and the yellow fluid 
surrounding the core of the vortex is seen to get concentrated in the two satellites 
(figure 3 d ,  e). The ultimate tripole consists of a red-coloured cyclonic core vortex 
flanked by two yellow/green-coloured satellite vortices (figure 3f). 

In $3 of this paper the details of tripole formation will be considered in terms of 
the spatial distribution of the vorticity, and it will be shown that the initial cyclonic 
vortex consists of a core of positive relative vorticity enclosed by a ring of negative 
relative vorticity , whereas in the tripole the negative vorticity is completely confined 
to the two satellite vortices alongside the central cyclonic vortex. In other words, the 
yellow and red dyes in the experiment of figure 3 can be thought of as being 
representative of anticyclonic and cyclonic vorticity, respectively, and the changing 
colour patterns nicely illustrate the redistribution of vorticity throughout the tripole 
formation. 

3. Measurements of the flow characteristics 
Along with experiments in which the phenomenon of the tripole formation was 

merely visualized, additional experiments were carried out in order to measure the 
actual flow field during the various stages of the tripole formation and the 
subsequent decay process. In this section the quantitative reconstruction of the flow 
field from the streakline photographs by digitization of the streaks will be described. 
The information thus obtained enables one to calculate the associated flow properties 
such as the distribution of vorticity and the corresponding stream function, which 
are essential ingredients needed for a clear picture of the tripole formation, stability 
properties and the decay process. The mature, stable cyclonic-core tripole is 
characterized by a cyclonic rotation of its axis, and measurements of the rotation 
speed will be described below. The decay of the tripole is monitored in terms of the 
decreasing vorticity maximum in the core vortex as well as in terms of the 
circulations of the three vortical regions. Several other quantitative observations will 
be discussed too, thus providing an overview of the properties of laboratory tripoles. 

3.1. Digitization of the flow jield 
Quantitative information about the evolving flow field was obtained from streakline 
photographs such as the ones shown in figure 2. For a number of particle paths the 
streak lengths were measured from an enlarged projection of the photograph, by 
digitizing the end points of the streaks. This digitization was carried out by hand on 
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FIGURE 4. A characteristic example of the digitized flow field. The vector field shown in (a )  is 
obtained from a streakline photograph, by measuring streak lengths and dividing by the exposure 
time. For the case of a 30 x 30 grid, the interpolated velocity field is shown in ( b ) .  The vortex was 
created by cyclonically stirring in an unconfined region in the rotating tank. The digitized 
photograph was taken at t = 9.4T after the forcing was stopped, with T = 6.4 s the rotation period 
of the turntable. The average water depth was H = 15 cm. 

an electronic digitizing pad connected to a personal computer. The length of each 
streak is then divided by the exposure time, thus yielding the average local velocity 
vector. An example of the digitized velocity field is presented in figure 4 ( a ) ;  the 
tripolar structure is clearly discernable. Subsequently, the velocity field v is 
calculated on a rectangular grid by numerical interpolation using an algorithm 
described to some detail by Nguyen Duc & Sommeria (1988). For the case of a 30 x 30 
grid the interpolated velocity field is shown in figure 4(b), in which the tripole 
structure is easily recognized. For a 'smooth ' interpolation the digitized flow field 
should have a homogeneous spatial distribution of vectors ; one should therefore 
avoid any clustering of vectors, because this may locally lead to unphysically large 
gradients in the vorticity of the interpolated field. For this reason, vectors are 
omitted in areas where many are too close together. 

Once this interpolated flow field is determined, it is possible to derive some more 
specific information about the tripole structure, such as the velocity distribution 
along any particular cross-section through the tripole. For this purpose a routine was 
developed for plotting the velocity components perpendicular and parallel to some 
prescribed straight line through a particular region of interest. If the grid is 
sufficiently fine, a good approximation is found by simply decomposing the velocity 
vectors on the interpolation grid that are within some prescribed distance S from the 
cross-sectional line into normal and tangential components. This approximative 
technique was the basis for that routine, and some examples of velocity distributions 
along a few interesting cross-sections through the tripolar vortex are given in 
figure 5.  It should be kept in mind that these velocities were measured in the 
reference frame of the rotating tank. The velocity relative to the rotating tripole 
structure can be obtained by correcting for its rotation, but because of the small 
value of the rotation speed this would hardly affect the velocity distribution as 
presented in figure 5 .  

One of the other relevant quantities that can be derived from the interpolated 
velocity field is the vorticity o = V A v .  Assuming the flow to be quasi-two- 
dimensional and close to divergenceless (this is certainly the case for rapidly rotating 
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FIQURE 5. Distributions of the velocity perpendicular to some characteristic cross-sections 
through the tripole vortex shown in figure 4:  (a) the major tripole axis AA', (b) the minor axis BB', 
and ( c )  a cross-section through -1le of the satellites CC'. The data points in the graphs are obtained 
from the interpolated velocity A d .  The Rossby number of the tripole, based upon the maximum 
relative velocity and its distance to the vortex centre, is approximately 2. 

systems with reasonably small Rossby numbers), a stream function + may be 
introduced, defined indirectly by v = V h k$, with k the unit vector in vertical 
direction and v = (u, v )  the planar velocity field with components u and v (here 
referred to in rectangular coordinates (2, y)). It is obvious that the vorticity o has a 
vertical component w, only. The scalar vorticity can be determined on each grid 
point by differentiation of the velocity field, according to 

Nguyen Duc & Sommeria (1988) estimated the relative error in the vorticity derived 
in this manner from the interpolated flow field to be approximately 10%. 
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FIGURE 6. Isoline plots of (a) the vorticity and ( b )  the stream function aa calculated from the 
interpolated velocity field shown in figure 4(b) .  

The stream function was in turn determined by numerically solving the Poisson 

w ,  (2) vz$b = - equation 

where V2 is the Laplace operator (the subscript z is from here on dropped from the 
vorticity). On the boundary of the rectangular domain of integration, the stream 
function is taken to be constant. A graphical representation of some isolines of w and 
$b associated with the velocity field shown in figure 4 is given in figure 6. Both isoline 
patterns show the tripole structure of the flow. In most of the graphs the isovorticity 
contours may locally be a little erratic, whereas the streamlines show a much 
smoother pattern : the irregularities in the vorticity pattern are ‘ironed out ’ by the 
integration of (2). 

A major general conclusion that can be drawn from the vorticity contour plot 
(which is representative of ‘mature ’ tripoles as monitored in other experiments) is 
that the anticyclonic vorticity is entirely concentrated within the two satellite 
vortices, and likewise the cyclonic vorticity in the central vortex. In each of the three 
regions visible in figure 6 (a)  the vorticity is continuously distributed. This vorticity 
pattern is typical for a tripole in the earlier stages after its formation, with the 
anticyclonic vortical regions close to the core and rather elongated : the tripole then 
essentially consists of one compact structure with distributed vorticity of both signs. 

3.2. Tripole formation process 
In general, one observes an evolution of the vorticity field that is schematically 
indicated in figure 7. Initially, a monopolar vortex, as mentioned before, consists of 
a core of positive relative vorticity (the hatched region in figure 7a) that is 
surrounded by a ring of negative vorticity (the non-hatched region in figure 7 a ) .  
After a transition period, initiated by the growth of a wavenumber 2 perturbation, 
the flow equilibrates in the ‘ tripolar state ’ which is sketched in figure 7 (c ) .  During the 
transition period the topological character of the vorticity field appears to change 
drastically. Whereas, initially, the region of negative vorticity consists of one set of 
nested contour levels, after equilibrium is reached, the negative vorticity is found in 
two disconnected sets of nested contour levels. It will be clear that no continuous 
map f: R2 + R2 exists that can map the vorticity distribution of figure 7 (a )  to that 
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FIQURE 7. Diagram illustrating the change of the vorticity distribution during the evolution of an 
isolated monopole which is schematically indicated in (a) as a ring of positive vorticity (hatched 
region) surrounded by a ring of negative vorticity (non-hatched region). A flow that conserves 
vorticity can take the configuration shown in (a) to that shown in (b) but not to (c). 

shown in figure 7(c). Smooth maps do exist though, which map the initial 
configuration onto that of figure 7 (b ) .  If, as a working hypothesis, one assumes that 
the flow is two-dimensional, inviscid and incompressible, then such a map is provided 
for by the flow itself. Considering time as a parameter, the one-parameter map 
induced by the flow is gt : R2 + R2 with gtx(0) = x(t), where x is the position of a fluid 
element at  time t. Ideal planar, incompressible flows can take the vorticity from the 
configuration of figure 7 (a)  to that of figure 7 ( b )  but not to that of figure 7 (c), as a 
consequence of Kelvin’s circulation theorem, i.e. the conservation of vorticity : 
Dw/Dt = 0. By dyeing a fluid element one can trace the motion of that element, 
and the photographs of figures 1 and 3 show that during the evolution, the whole 
vortex is deformed and torn out, but at  all times remains connected. The fact that 
the negative vorticity becomes ultimately concentrated in two distinct and 
disconnected regions thus seems to be a viscous effect : the considerable shear one 
would find in the thin filaments connecting the satellites with the core (see figure 7 b ) ,  
is dissipated by the slightest amount of viscosity. These filaments remain visible in 
the dye structure, since the diffusion of dye is not related to the diffusion of 
momentum. 

The tripole formation is intimately linked to the structure of the initially circularly 
symmetric vortex. It is hard to generate cyclones in the rotating tank which do stay 
circularly symmetric and show no transition into a tripolar flow structure (for 
example, the ‘ sink ’ vortices discussed by Kloosterziel & van Heijst (1991 b)  appear 
to be quite stable). In the realm of purely two-dimensional (planar) incompressible, 
inviscid flow, Rayleigh’s inflexion-point theorem states that a necessary condition 
for instability in the linearized evolution is that the gradient of the vorticity changes 
sign at least once (see Drazin & Reid 1981). The growing disturbances associated with 
such an instability are non-axisymmetric and lead to a destruction of the initial 
circular symmetry of the streamline and vorticity patterns. Typically, the cyclonic 
stirring vortices studied in this paper are isolated, i.e. have vanishing circulation for 
larger radii, and generally consist of a core of positive relative vorticity, surrounded 
by a ring - of finite width - of negative vorticity. Observations reveal that the radial 
distribution of azimuthal (swirl) velocity in a vortex prior to transforming into a 
tripole can often be closely approximated by a simple Gaussian function ; an example 
of such a velocity distribution is presented in figure 8. The solid line is a fit to the data 
with a curve 

v (R)  = gUR e-iRR’, (3) 

where U is an appropriate velocity amplitude and R the non-dimensionalized radius 
R = r /L ,  with L a lengthscale chosen such as to have the maximum of v coincide with 
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FIGURE 8. Azimuthal velocity distribution of a cyclonic, stirring-induced barotropic vortex prior 
to transforming into a tripole. Experimental data are denoted by black dots while the solid line 
represents the fitted curve given by (3). 

that  of the observed distribution. The corresponding stream function is (dim- 

(4) 
ensionally) 

(5) and the vorticity 

The gradient of this vorticity distribution, representative of typical conditions 
leading to tripole formation in the laboratory, is 

+(R) = ~ U L  e-W 

w ( ~ )  = -(1-~&2)e-tR'. U 
L 

and obviously changes sign a t  a non-dimensional radius R = 2. This particular profile 
satisfies Rayleigh's inflexion-point theorem, and instabilities can therefore in 
principle set in (but not necessarily). Numerical experiments of Carton et ul. (1989) 
indeed show tripole formation in simulations of the fully nonlinear evolution (with 
added hyperviscosity) of Gaussian vortices perturbed with wavenumber-2 dis- 
turbances. 

One may argue that the laboratory flow is not two-dimensional ; first of all because 
there is a spatially varying fluid layer depth and secondly because vertical velocities 
are not ruled out during the evolution of the vortex. In  rapidly rotating systems, for 
small-Rossby-number flows, the vertical velocities possibly involved in certain 
instability mechanisms, are expected to be small, though. The free-surface 
deformability - with the associated possibility of vorticity generation by vortex 
stretching - is of no importance in the tripole formation, as simple experiments 
show: tripole formation is not) suppressed by covering thc tank with a rigid cover. 
This observation also shows that the formation of tripoles is not related to a kind of 
topographic forcing by the parabolic free surface. In fact, tripole formation has also 
been observed to  take place over strongly sloping bottom topography and away from 
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the tank centre (see Carnevale, Kloosterziel & van Heijst 1991). Still, however, there 
remains the possibility that  vertical velocities are involved in the instability 
mechanism. Consider for instance the rigid-lid case, with the boundary conditions 
that the vertical velocity is zero both a t  the bottom and the upper (rigid) surface. If 
a circularly symmetric vortex is imagined to be exactly centred in the rotating tank, 
then the results stated by Chandrasekhar (1961) can straightforwardly be 
generalized. A normal-modes analysis of the linearized set of equations for the 
complete three-dimensional problem shows that the onset of instability is determined 
(in the linear context) by the sign of the so-called Rayleigh discriminant @(r) that 
can be defined as 

@(r)  = - ( w ) ~ ,  

where v is the azimuthal velocity. The results are that the flow is stable to  
axisymmetric disturbances whenever the discriminant is positive everywhere, 
whereas it is unstable if i t  is negative somewhere (this is a sufficient condition for 
instability). For non-axisymmetric disturbances the flow is unstable too if the 
discriminant is negative but positiveness cannot be shown to ensure instability or 
stability. I n  both cases, that  is, axisymmetric and non-axisymmetric, vertical 
velocities necessarily occur. 

By replacing v in the expression for the discriminant by v +Or, with SZ the rotation 
rate of the tank, the equivalent necessary and sufficient condition for instability of 
a vortex in the centre of the tank is that  the non-dimensional product (E'U+R) (E&+ 2) 
is negative somewhere. I n  the above expression G = v /U,  6 = w / ( U / L )  and E is the 
Rossby number : E = U/(sZL). The same expression can also be shown to be valid on 
an f-plane (with S2 = s). It is not hard to verify that in the case of the above- 
mentioned Gaussian distribution, representative of cyclones that become unstable 
and become tripoles, the sign of the product of velocity and vorticity is negative for 
large enough Rossby numbers, namely, for approximately E > 4.5. For anticyclones 
the Rossby number merely needs to exceed a value of about 0.65. In view of 
Chandrasekhar's results, i t  can be concluded that if the Rossby number of a cyclonic 
vortex exceeds this rather high value of 4.5, centrifugal instabilities will emerge in 
the form of axisymmetric and non-axisymmetric overturning motions, although a 
priori it is not clear which mode has the largest growth rate. For smaller Rossby 
numbers (in the linear evolution) axisymmetric disturbances will not amplify but 
growing non-axisymmetric disturbances are not excluded. It remains a matter of 
speculation, therefore, whether the observed evolution is governed mainly by two- 
dimensional dynamics or whether three-dimensional effects do play a role after all. 
The explosive instability of most anticyclonic vortices - as compared to their 
cyclonic counterparts - (see Kloosterziel & van Heijst 1989) indicates that three- 
dimensional effects can be important (in purely two-dimensional flows there is no 
difference in stability between cyclones and anticyclones). The free surface itself does 
not seem to play an active role and can be excluded from most considerations. The 
striking resemblance between the evolution in the laboratory and the numerical two- 
dimensional simulations of Carton et al. (1989), and the observation that during the 
evolution all motion appears to take place in Taylor columns, indicates that the 
tripole evolution is close to two-dimensional. 

(6) 
d 
dr 

3.3. The tripole rotation 
As remarked in $2, a characteristic feature of a laboratory tripole is that i t  rotates 
around a vertical axis through the centre of the core vortex, relative to the frame of 
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FIGURE 9. The rotation speed of the tripole is determined by measuring its orientation angle 8 
relative to the rotating frame at subsequent times during the experiment. A typical result of such 
measurements is shown in (a), and differentiation with respect to time yields the rotation speed 8 
as represented graphically in ( b ) .  In both graphs the data have been plotted versus the non- 
dimensional time 7 = .t/TE, where T, is the Ekman timescale defined by (7). Experimental 
parameters: see figure 2. 

reference of the rotating system. For a number of experiments the orientation angle 
0 relative to some arbitrary initial orientation was measured from sequences of 
photographs taken during an experiment. A typical result is shown in figure 9(a) 
where the angle 8 is plotted as a function of the dimensionless time r = t /TE,  with 
TE the Ekman timescale defined as 

where H is the average fluid depth and v the kinematic viscosity. Although it is not 
clear a priori that the Ekman timescale is the relevant one for the decaying tripole, 
it is clear from figure 9 (a )  that - at least for the rotation - it seems the right choice 
(note that the tripole has come to a virtual standstill after a period equal to 
approximately twice the Ekman time). The data shown in figure 9(a) suggest an 
exponential slow-down of the rotation rate, i.e. 

&(TI = &(o) e-a7, (8) 
where a dot denotes differentiation with respect to 7.  The angular speed d 
corresponding to the observations shown in figure 9(a), is shown in figure 9(b). 
Essentially the same data set is shown in figure 10, but now the angular speed 6 is 
normalized by its value at r = 0 and plotted logarithmically versus the dimensionless 
time. The straight line through the data shows that the decay is indeed close to 
exponential, that is, according to (8). The slope of the line in figure 10 (which has 
been fitted by eye) is approximately a = 3.1. In other experiments a similar 
exponential decrease of the rotation speed was found, but with different values of a, 
namely ranging from 1.9 to 3.9. Although the reason for these differences are at this 
stage unclear, it  is felt that the variations in the observed a-values are somehow 
related to the properties of the initial vortex (its diameter and Rossby number). As 
will be discussed hereafter, the tripole decay is a complicated process, being partly 
caused by the spin-down mechanism associated with the bottom Ekman layer, and 
partly by the lateral entrainment of ambient fluid. 
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FIGURE 10. The same data of the tripole rotation speed Q as presented in figure 9, but now 
normalized by the maximum value em,, in the data set, and plotted on a logarithmic scale. The 
straight line has been fitted to the data by eye. 

T 

3.4. Scatter plots 
On typical dynamical timescales that are much smaller than the Ekman time or a 
simple diffusive timescale (a few eddy turnover times), it appears that the tripole is 
close to stationary in a frame of reference that is corotating with the tripole. In this 
frame, to leading order, the Jacobian of the vorticity and stream function vanishes, 
i.e. J($',V2$') = 0, where the primes indicate that the stream function and the 
vorticity have to  be corrected first for the overall rotation of the tripole: 

*+-+&, wf = -vz$' = w - 2 0 .  (9) 

Here r measures the distance from the centre of the tripole. 

stream function and vorticity, that is, 
The vanishing Jacobian implies the existence of some functional relation between 

Vz$' = F($') ,  (10) 

where F is some function of one variable. This function can be 'measured' by simply 
plotting the value of vorticity versus that of the stream function as found on each 
grid point. The result is what is called the 'scatter plot' of the flow. For circularly 
symmetric vortices the functional relation can be measured directly (i.e. without a 
rotation correction), and the result for a typical circular vortex just before 
transforming into a tripole is shown in figure 11. As a matter of fact, this is the scatter 
plot of the particular vortex that gave rise to the tripole whose digitized properties 
are shown in figures 4 and 6.  Working with a 30 x 30 grid, some 900 data points have 
been plotted in figure 11 (a ) .  It is seen that the scatter plot defines a function F($)  
that is close to linear in the positive-vorticity core of the vortex, whereas it is 
strongly nonlinear in the region of negative vorticity. In  this plot each point on the 
$-axis corresponds to a ring of fluid at  a certain radius from the centre of the vortex. 
As remarked in 53.2 and seen in figure 8, these unstable monopoles can often closely 
be approximated by the Gaussian velocity profile givcn by (3). Elimination of R 
between (5) and (4) shows that the function F in this case is 

D = F($)  = 2$(1 +log2$), (11) 
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FIGURE 11.  Plots showing (a )  the scatter plot of a cyclonic stirring vortex prior to transforming 
into a tripole and ( b )  theoretical function relating vorticity to stream function for the Gaussian 
vortex with a velocity profile given by (3). 

where vorticity and stream function have been non-dimensionalized according to 
$ = $/(ULJ and G = o/(U/L). This function is plotted in figure l l ( b ) .  Note that $ 
runs from $ = 0, which corresponds to the limit R = 00, to $ = t ,  which corresponds 
to R = 0. The resemblance between the curves in figure 11 (a,  b)  indicates that this 
particular vortex had to a good approximation a Gaussian structure. 

The digitized properties of the tripole emerging from this initially close-to-Gaussian 
vortex were shown in figures 4 and 6, and its scatter plot is presented in figure 12. 
The fact that the tripole is not stationary in the original frame of reference, i.e. 
that of the rotating table, is reflected by the scatter in the lower branch of the ( w ,  
$)-plot shown in figure 12(a). The scatter indicates that no well-defined relation 
between vorticity and stream function exists in the satellites (the lower branch has 
negative vorticity and thus corresponds to the satellite regions), which simply means 
that in the satellites the vorticity contours do not coincide with the stream function 
contours. Figure 12 ( b )  shows the same scatter plot obtained after correction for the 
overall rotation of the tripole; it  is seen that the lower branch has 'condensed' onto 
a well-defined - almost linear - function, implying that in this frame of reference the 
isolines do coincide. Note that the upper branch, which corresponds to the region of 

I1  FLM 225 
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FIQURE 12. Graphs showing the scatter plot of a tripole (a) before correction and ( b )  after 
correction for its rotation. The scatter plots were obtained from the tripole previously shown in 
figures 4 and 6. 

the core of positive vorticity, has not appreciably changed after the correction ; this 
is because in this particular case the vorticity and stream function contours were 
close to circular in this region and thus hardly affected by an additional rotation. The 
scatter that remains in figure 12(b)  is due to small errors, but possibly also reflects 
the fact that the flow is not exactly stationary. 

It may be noted that, compared to the scatter plot of the monopole that became 
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FIGURE 13. Isoline plots of the stream function of the tripole previously shown in figure 6 ( b ) ,  
but now relative to a frame corotating with the tripole. 

unstable (see figure l l) ,  the function relating vorticity to stream function has 
considerably changed; it now consists of two branches both with a positive slope. 
Any ‘point’ on the positive branch of the function indicated by the data in figure 
12 ( b )  corresponds to a ring of fluid elements in the core of the tripole, whereas any 
point on the negative branch corresponds to two rings of fluid elements, one in each 
satellite. The horizontal branch represents the exterior of the tripole, in which the 
relative flow is irrotational; after the correction for the rotation this region has 
constant vorticity. The effect of correcting for the tripole rotation can also be seen 
in figure 13, which presents a contour plot of the stream function relative to a frame 
corotating with the tripole previously shown in figure 6 ( b ) .  Note the striking 
resemblance between this relative streamline pattern and the dye pattern as visible 
on the photograph in figure 1 (f). 

The ( w ,  +) scatter plots are of interest for several reasons. The mere fact than an 
unstable vortex rapidly equilibrates in the tripole state indicates that this particular 
ultimate state must be some sort of ‘ attractor ’. (Note that the transition to a tripole 
occurs on a timescale that is short compared to the viscous timescales.) These 
attractors for dissipative infinite-dimensional systems are hard to define, but in 
plasma physics and fluid mechanics some theories have been proposed that 
tentatively characterize these states as constrained critical points of some suitable 
variational principle. These theories are based on what is called the ‘selective decay 
hypothesis’ for certain dissipative systems (see Hasegawa 1985). In all such theories 
the predicted state is characterized by some functional relation between the fields of 
interest; for the ‘Taylor minimum-energy state’ this is a relation between the 
magnetic field and its curl (see Taylor 1974) whereas for the so-called ‘minimum 
enstrophy states ’ of two-dimensional flows it defines a coordinate-free relation 
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FIGURE 14. Graphical representations of the decreasing vorticity maximum w,,, as determined 
from the digitized flow field. The data are normalized by the initial value w,,,(O) and are plotted 
in (a )  as a function of the non-dimensional time 7. Graph ( b )  shows the same data, but now plotted 
on a logarithmic scale; the straight line has been fitted by eye. Experimental parameters: see 
figure 2. 

between vorticity and stream function (see Leith 1984 and Stern 1975). The scatter 
plots introduced above can therefore serve as a verification of such proposed theories. 

3.5. Decay 

The slow-down of the tripole rotation speed is dircctly associated with the decay of 
the flow within the tripole structure itself. Visual observations revealed that in the 
final stage, in which the tripole rotation had stopped, the relative flow was virtually 
zero. In  the experiments in which the flow was visualized by addition of dye (like the 
one illustrated in figures 1 and 3),  a well-defined tripolar structure was still clearly 
visible in the dye distribution, although any relative motions were absent in this 
ultimate state of rest. This remaining dye pattern ultimately becomes ‘blurred ’, 
owing to molecular diffusion of the dye. In  order to quantify the decay of the tripole 
vortex, the vorticity maximum - as determined from the digitized flow after 
interpolation and subsequent differentiation - was plotted as a function of the 
dimensionless time 7 in figure 14(a) .  In this graph the vorticity maximum wrnaX(7) 
was normalized by its value wrnax(0) a t  7 = 0;  this starting time 7 = 0 corresponds to 
the time a t  which the first of the sequence of photographs of the tripole was taken. 
The gradual decay of the vorticity maximum is obvious, and appears to be described 
by an exponential function. The same data are plotted in figure 14(b), now as log 
(wmax(~)/wmax(0))  versus 7 ;  the straight solid line has been fitted to the data by eye. 
The reasonable collapse of the data points onto the line confirms the conjecture that 
the decay is close to exponential, i.e. 

For this particular experiment the slope of the straight line measures approximately 
p =  1.8. 

It is not unreasonable to  assume that the spin-down mechanism associated with 
the recirculation flow driven by the Ekman layer a t  the bottom is the major factor 
in the decay of the tripole vortex. For the decay of a monopolar, axisymmetric 
vortex in a free-surface rotating fluid it was found experimentally that the maximum 
swirl velocity of the vortex also decreases in an exponential fashion, but with an 
exponential coefficient p z 1.1 (see Kloosterziel & van Heijst 1991b). This value is 
somewhat larger than the value p = 1 derived by Greenspan & Howard (1963) for the 
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FIQURE 15. A typical evolution of the (w', 9') scatter plot during the tripole decay process is shown 
in (u)- (d) .  A correction has been made for the actual rotation speed 8 of the tripole a t  the time of 
the photographic recording of the flow ; this correction can be observed in the shift of the horizontal 
branch relative to the line w' = 0. The graphs correspond to subsequent stages in the decay process, 
viz. (a )  T E t /TE = 0.12, ( b )  0.14, ( c )  0.26, and ( d )  0.69, with T, = 174 s. Experimental parameters: 
see figure 2.  

linear spin-up or spin-down of fluid confined in a circular cylinder with a rigid lid. The 
deviation of the experimental result from the theoretically predicted value of the 
decay rate was attributed by Kloosterziel & van Heijst (1991 b )  to nonlinear effects. 
It appears that nonlinear effects account for the faster decay of tripoles too, but an 
analysis of the spin-down problem for vortices as complicated as tripoles has as-yet 
not been made. 

In addition to the spin-down mechanism provided by the Ekman layer, the 
decrease of the tripole rotation speed and the decay of the relative flow within the 
tripolar structure may also be caused by the lateral entrainment of ambient fluid into 
the satellite vortices. This effect can be closely observed in the photographs 
presented in figures 1 and 3:  the dyed fluid inside the satellites shows a spiral-like 
pattern, with undyed fluid 'sandwiched' in between. A notable feature is that the 
core vortex does not show this phenomenon ; it  is somehow much more shielded from 
penetration by the exterior fluid. The lateral entrainment - supposedly a viscous 
effect - apparently brings initially quiescent ambient fluid into the rotating tripole, 
and therewith contributes to a gradual slow-down of the rotation of the vortex 
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structure. As will be discussed in $4, the cross-sectional dimensions of the tripole, and 
in particular the separation distances between the centres of the satellites and the 
core vortex, show a gradual increase with time (see figure 18b). This ‘widening’ of the 
tripolar vortex clearly can be associated with the entrainment process. These features 
can also be observed in the evolution of the ( w , $ )  scatter plots of the tripole, as 
illustrated by figure 15. In the initial stage (figure 15a), the points show a clustering 
onto three well-defined branches, being the curved upper branch corresponding to 
the vortex core (w‘ > w,,,,), the lower branch associated with the satellite vortices 
(w’ < w,,,,), and the horizontal branch (w’ = w,,,,) representing the irrotational 
exterior. Here w’ is the vorticity in the reference frame corotating with the tripole, 
i.e. w’ = w+w,,,,, with w the vorticity relative to the rotating tank (as derived from 
the digitized photographs), and w,,,, is the correction for the tripole rotation, i.e. 
w,,,, = - 2 0 ,  with 0 the tripole rotation speed. Note that all the ( w ,  $) scatter plots 
presented in figure 15 have been corrected for the actual rotation of the tripole a t  
the time the photographs were taken; this explains why the horizontal branch 
(representing the exterior) lies slightly below the line w‘ = 0. Owing to the diminishing 
rotation rate, this horizontal branch approaches the line w’ = 0 more closely as time 
progresses. 

In the subsequent stages the amplitude of the vorticity maximum w,,, is 
observed to decrease in comparison with the amplitude of the vorticity minimum 
Iwminl found at the centre of the satellites, as is seen in figure 15 ( b ,  c).  At later stages 
(see figure 1 5 d ) ,  the amplitudes of vorticity extrema in the satellites and the central 
vortex become comparable in magnitude. The reason for this phenomenon lies in the 
sign of the vorticity. As discussed by Kloosterziel (1990) for the case of an 
axisymmetric vortex in a rotating fluid, the vorticity in the centre of a decaying 
vortex is governed by a Riccati-type equation. For a non-zero Rossby number this 
equation is not symmetric for changes in the sign of the relative vorticity, and it 
reveals that cyclonic vortices decay at a faster rate than their anticyclonic 
counterparts. Although the tripole has a much more complicated geometry, it may 
be expected that to some extent the same dynamics still apply to the individual sub- 
vortices (being core and satellites) of this vortex structure. 

The scatter plot of the tripole in the later stages of its evolution shows the 
occurrence of a horizontal band between the intersections of the two main branches 
with the line w’ = w,,,,. This band corresponds to the flow in the regions between the 
central vortex and the satellites. Careful inspection of the dye patterns observed 
during this stage (cf. figure 1 f) reveals that these regions contain undyed fluid, 
obviously originating from the irrotational exterior region. It thus appears that the 
lateral entrainment of ambient fluid, resulting in the ‘widening ’ of the tripole, causes 
the branches of the core and the satellite vortices in the (w,$)-plot to separate. 
Another feature that can be observed in the evolution of the (w,$)-plot of the 
evolving tripole is the relaxation to linearity in both the (coinciding) satellite 
branches and the core branch. 

It thus appears that, apart from a decrease in the magnitudes of velocities and 
vorticity, the decay is also characterized by a gradually changing distribution of 
these properties over the tripole structure, and also by a slightly changing shape of 
the vortex. In the light of this, it is worth considering the evolution of the velocity 
distributions along characteristic cross-sections through the tripole, as also shown in 
figure 5. For a typical experiment the time evolution of the velocity distribution 
along the major axis AA (see figure 5 for definition) is illustrated in figure 16. As 
mentioned before, these profiles are measured relative to the frame of the rotating 
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FIGURE 16. Graph showing the evolution of the flow profile along the main axis through a tripole 
(AA’ in figure 5). These profiles are taken from the tripole previously shown in figure 2, and were 
measured at (a)  t /T,  = 0.12, (a) 0.26, (c) 0.41 and ( d )  0.69, with T, = 175 s. Experimental 
parameters: see figure 2. 

tank ; correction for thc tripole rotation, however, would only have a slight effect on 
the velocity distribution. For the sequence shown here, the pertinent Rossby number 
(based on the maximum velocity, and its distance from the vortex centre) decreases 
from approximately 1.2 to 0.3 in the time interval t = 0.12TE to 0.69TE. One obvious 
feature visible in figure 16 is the significant decrease in the extrema of the velocity 
in the core vortex, whereas those in the satellite vortices hardly show any decrease 
during that time span. In addition, the evolving velocity distribution also indicates 
the widening of the tripole due to the lateral entrainment process, although in this 
particular case the widening shows some asymmetry: the zero at  the right of the 
centre zero has shifted over a larger distance than the one at the left. 

4. Comparison with a point-vortex model 
It is clear from the results presented in $3 that the tripolar vortex is characterized 

by an essentially continuous vorticity distribution over three distinct regions that 
are initially close together but at later times farther apart. Monopolar and dipolar 
vortex structures in many different circumstances are also observed to have a 
continuous vorticity distribution (see Kloosterziel 6 van Heijst 1991 b,  and van 
Heijst & F16r 1989). Analytical models usually adopted for a description of these 
vortex structures are, for instance, some Gaussian model for isolated monopoles, and 
Lamb’s dipole (see e.g. Lamb 1936 or Batchelor 1967) for the dipolar vortex. In both 
cases the vorticity is continuously distributed over the vortex structure. Because of 
its relatively recent discovery, such an analytical, distributed-vorticity model has 
not yet been developed for the isolated tripole as considered in the present paper. It 
is anticipated, however, that any (future) analytical tripole model with a continuous 
vorticity distribution will be considerably more difficult to construct than its 
monopolar and dipolar counterparts, owing to the intricate geometry of the tripolar 
vortex. 

As a first step towards an analytical description of the flow, a model of a tripole 
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FIGURE 17. Schematic representation of the point-vortex model of the tripole. 

will be considered in which the tripole consists of three symmetrically aligned point 
vortices of the appropriate signs and strengths. Point-vortex models - though rather 
crude simplifications of realistic vortex structures - have succcssfully been applied to  
describe the interaction of single-signed vortices ; for example, the linear propagation 
of a dipolar vortex is nicely predicted by a model consisting of a pair of point vortices 
of equal but oppositely signed strengths. Also, the much more complicated mutual 
interaction of a large number of monopolar vortices (with non-zero circulation) in a 
two-dimensional flow can to a satisfactory degree be modelled by point vortices, as 
demonstrated in a numerical study by Benzi et al. (1987). 

For the tripole, the obvious point-vortex model consists of a symmetric linear 
arrangement of three potential vortices as sketched in figure 17: the anticyclonic 
satellite vortices (with equal strengths y s )  are placed a t  equal distances a from the 
central, cyclonic vortex (with strength ye). It can easily be verified that this vortex 
constellation rotates steadily, with angular speed 

The streamline pattern of the flow in a corotating frame of reference has been shown 
for the case (ye, ys)  = (2, - 1) with a = 1 by Kloosterziel & van Heijst (1989). It has 
been mentioned in $3  that the tripole originates from an initially circular vortex with 
a zero net circulation: the area integral of the positive vorticity in the central core 
of the initial vortex is balanced by the integral of the negative vorticity distributed 
over the outer ring of the vortex. It might be expected, therefore, that the tripolar 
vortex - essentially formed by a reshaping of the outer ring of negative vorticity into 
the two satellite vortices - will still be characterized by a net circulation equal to 
zero, according to Kelvin’s theorem, if viscous effects and deviations from the 
supposed two-dimensionality of the flow can be neglected. For the point-vortex 
model this would imply that the strengths ought to be chosen as (ys,  yc, ys) = ( -7 ,  
2y, - y ) ,  so that - according to  (13)  - the angular speed of the model tripole would 
then be 3y/(4na2) .  

I n  order to make any comparison between the ‘real’ tripole and its point-vortex 
idealization, one has to  determine the strengths yc and ys, and also the separation 
distance a between the central vortex and its satellites. The strengths can be 
determined by numerical integration of the vorticity w ( x )  over some area A (enclosed 
by a contour C )  that represents one of the sub-vortices of the tripole: 

w ( x )  dA = o.dZ= y ,  (14) k 
with dl an infinitesimal element of the closed contour C. The surface integral of the 
vorticity was estimated by calculating the conical volume with an elliptical or 
circular base defined by the w = 0 contour, and a cone height equal to  max ( Iwl) .  The 
continuous distribution of the vorticity within each of the sub-vortices is thus 
approximated by a linear function. A typical result of such calculations is shown 
graphically in figure 18(a) : the strengths ysl and ys2 of the satellite vortices, and the 
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FIGURE 18. Graphical representations of (a) the vortex strengths yc,  ys l ,  yeZ (indicated by + , 0 
and 0 ,  respectively) and (b) the separation distance a between the core vortex and the satellites, 
as determined from the vorticity maps, for subsequent stages in the decay process. The data points 
in (b) have been normalized by the value a, of the separation distance as measured on the first 
photograph of the sequence. Experimental parameters : see figure 2. 
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FIGURE 19. Graph showing the relative values of the circulations y, and y, (corresponding to  the 
core and the satellites, respectively) in the decaying tripole. The data are the same as those 
presented in figure 18 (a), although the average value ys = i(ys1 + ysz) of the satellite circulations has 
been plotted, rather than the individual values. The straight line represents the relationship 
y s ,-Ly a C. 

strength yc of the central vortex as determined at  subsequent stages of the decay 
process are given as a function of the dimensionless time T = t /TE.  The decay of the 
vortex circulations is obvious. 

The separation distances a, and a, between each of the satellite vortices and the 
tripole centre were determined by eye from the vorticity contour plots, and their 
average values a = ;(al +a,) corresponding to the data points in figure 18(a) are 
presented graphically in figure 18(b). The data, which have been normalized by the 
value of a as measured on the first photograph of the sequence, suggest an 
approximately linear increase with time; the straight solid line has been fitted to the 
data by eye, and has for this experiment a slope of 0.66. As mentioned before, this 
‘widening ’ is attributed to the gradual entrainment of ambient fluid into the rotating 
tripole, as is visible in the dye patterns shown in figure 1. 

It can be seen in figure 18 (a)  that in the course of the experiment the circulations 
ysl and ys2 of the satellite vortices, while decreasing in magnitude, have 
approximately equal values - a t  least within the experimental accuracy - and this 
allows one to use their average value ys = i(ysl +ys2)  in the calculation of the tripole 
rotation speed according to (13). In  order to check the conjecture that the net 
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FIGURE 20. A comparison between the tripole rotation speed 6 observed in the experiment and 
that predicted by the point-vortex model (13). The black dots represent the experimental data (cf. 
figure 9 b ) ,  and the open circles represent the theoretical values of (13) based on the data given in 
figure 18. The calculation was carried out for a zero-circulation tripole ( -y ,2y ,  - y ) ,  with y = 

7 

37, +2lr,l). 

circulation of the tripole be zero, i.e. ys = -hC, the values of ys were plotted versus 
the values of yc for the same times T as in figure 18(a), and the result is presented in 
figure 19. For a correct interpretation of the graph it should be kept in mind that the 
values of yc and ys decrease with time. The solid line represents the conjectured 
relation ys = -be, from which the data appear to  deviate systematically: the 
satellite vortices are systematically stronger than would be expected from Kelvin’s 
circulation theorem. Because the departures from the relationship ys = -bc are 
rather marginal, the strength y for a tripole indicated by the triplet (-7,271, - y )  was 
calculated according to y = icyc + 21ysl). As mentioned before, the point-vortex 
model for this zero-circulation tripole predicts an angular velocity 3y/(4xa2), and the 
values calculated with the data given in figure 18 are presented graphically in figure 
20, together with the observed rotation speed as given in figure 9. 

It is obvious from this graph that, although the theoretically predicted values are 
systematically larger than the experimental data, the tendency for the rotation 
speed of the tripole to  gradually decrease is represented fairly well by the point- 
vortex model. The discrepancy between the experimental data and the values 
predicted by the model can mainly be attributed to  the crude estimation of the 
vortex strengths yc, ysl and ysz from the vorticity contour maps. As mentioned 
before, the surface integral (14) over the vorticity was approximated by calculating 
the volume of a cone with height max ( Iwl)  and a base defined by the w = 0 contour. 
This w = 0 contour usually has a rather erratic appearance (because the vorticity is 
calculated by differentiation of the flow field), implying that the base is ill-defined. 
Fitting with a circle or ellipse inevitably introduces substantial errors in the 
calculations of the y-values. Moreover, the linear approximation, by taking a cone 
rather than a more realistic representation of w ( x )  in A ,  adds to these errors. I n  
addition to these approximations, the distances a, and a2 between the satellites and 
the tripole centre are determined from the vorticity contour plots, assuming that the 
positions of the point vortices coincide with those of extremal vorticity. This 
assumption may hold for the centre vortex, but for the non-symmetric vorticity 
distributions of the satellites the centre of ‘vortical gravity’ does not in general 
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coincide with the position of the vorticity extremum, implying that some systematic 
errors in the estimation of the satellite separation distances are introduced in this 
way. Notwithstanding these inaccuracies in the approximation method, the results 
shown in figure 20 indicate a reasonably good agreement between the observed 
tripole rotation speed and the value predicted by the point-vortex model. 

5. Stability 
The stability problem of the tripole does not lend itself to an analytical treatment, 

for instance a normal-modes analysis, since a simple analytical expression reasonably 
representing a tripole with distributed vorticity has not been found yet. The 
coordinate-free characterization of the quasi-stationary tripoles, that is, the scatter 
plots, may play an important role in future nonlinear stability proofs of planar flows, 
but many technical problems still have to be overcome. The variety of functional 
relations between vorticity and stream function shown in figure 15, each 
corresponding to a quasi-stationary , stable tripole, indicates that extensive classes of 
nonlinearly stable tripoles exist, but proving this is as yet impossible. 

The stability of the point-vortex tripole, briefly discussed in the previous section, 
is amenable to an analysis (see Aref 1979). An extensive analysis of this model shows 
that the point-vortex tripole with vanishing circulation is nonlinearly stable, i.e. for 
all small but finite perturbations the three vortices will remain close to each other 
(see Kloosterziel 1990). A model tripole with negative circulation, that is, with 
satellites each as strong as the central vortex, is found to split up -when perturbed 
-into a dipole that moves away, leaving behind a single vortex (see Morikawa & 
Swenson 1971). 

The internal structure of the tripole is important as will be seen, and such finer 
details cannot be captured by a simple point-vortex model. For instance, in figure 21 
the evolution of an unstable tripole is shown. In this particular case the central 
cyclonic vortex splits into two halves, each pairing with one of the satellites, thus 
leading to the formation of two dipoles that move away in opposite directions (this 
is reminiscent of the dipole splitting of anticyclones, as described by Kloosterziel & 
van Heijst 1989 but no tripole formed first in those cases). The scatter plot of the 
initial vortex that transformed into the tripole shown in figure 21 (a), is presented in 
figure 22. By comparing this initial condition with that of a stable tripole like shown 
in figure 11, a remarkable difference is observed, which probably accounts for the 
observed difference in stability behaviour. Both scatter plots show a vanishing 
gradient in the vorticity in the ring of negative vorticity, which is related to the 
formation of the satellites, but in figure 22 the gradient also appears to vanish close 
to the centre of the vortex, i.e. at the tip of the upper branch. Although a proof of 
instability necessarily involves the construction of a growing mode, it is a strong hint 
that the central vortex is itself unstable, which, with hindsight, is seen to be true. 

Another important difference between the scatter plot of a vortex leading to the 
formation of a stable tripole (figure 11) and the one leading to an unstable tripole (e.g. 
figure 22) lies in the ratio of the negative and positive vorticity amplitudes. As 
remarked before, the initial monopolar vortex has a core of positive vorticity, 
surrounded by a band of negative vorticity. It was found in an analytical study 
(Flier1 1988) that the stability behaviour of piecewise-constant-vorticity vortices 
strongly depends on their vorticity distribution, i.e. on the width of the outer ring of 
negative vorticity relative to the core diameter, and the ratio of the negative and 
positive vorticity amplitudes. Although this approach is rather approximate (the 
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FIGURE 21 (a ,b) .  For caption see facing page. 
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FIGURE 21.  Streakline photographs showing the evolution of an unstable tripole. The photographs 
were taken at times (a )  t = 2.7T, ( b )  3.3T, ( c )  3.9T and ( d )  4.5T after lifting the cylinder, with 
T = 6.4 s the rotation period of the turntable. This vortex was created by stirring cyclonically in a 
cylinder with a diameter 2R, = 20 cm. The average water depth was H = 17.6 cm. 
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FIGURE 22. Scatter plot of the cyclonic stirring vortex that eventually turned into the unstable 

tripole shown in figure 21. 

continuous distribution being modelled by a discrete distribution of constant 
positive vorticity and constant negative vorticity), some of its results have turned 
out to be in accordance with laboratory observations of unstable vortices 
(Kloosterziel & van Heijst 1991 a).  The scatter plot of the vortex that eventually 
became unstable (figure 22) reveals an amplitude ratio close to one, which implies - 
according to Flierl's (1988) results - that the vortex is more unstable than its 
counterpart with a smaller amplitude ratio. Following the sequence of respective 
events (compare figures 2 and 21), this appears to be true. Finally, in figure 23 the 
evolution of the vorticity distribution as determined by digitizing the streakline 
photographs of figure 21 is shown. 

6. Conclusions 
The tripolar vortex is a relatively novel feature in fluid mechanics, and although a 

number of its properties have been investigated recently in numerical studies (Legras 
et al. 1988; Carton et al. 1989; Polvani & Carton 1990), the laboratory experiments 
described in this paper are the first in which the dynamical properties of 'real' 
tripoles were measured. The tripole consists of three aligned patches of distributed 
vorticity of alternate signs, and the structure rotates as a whole about the centre of 
the core vortex. In the previous sections of the paper it was shown that in a rotating 
fluid the tripole vortex can emerge as a stable end-product of an unstable cyclonic 
monopolar vortex. The initial axisymmetric vortex consists of a core of cyclonic 
relative vorticity surrounded by a ring of anticyclonic relative vorticity. During the 
transformation into the tripole structure, the vorticity is observed to be redistributed 
in such a way that eventually the negative and the positive vorticity are concentrated 
in the two satellite vortices and the central vortex, respectively. This process of 
vorticity redistribution (or of other material properties of the flow) is nicely 
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10 cm - 
FIGURE 23. Sequence of vorticity contour plots illustrating the evolution of an unstable tripole. 
The plots were obtained by digitizing the streakline photographs presented in figure 21, and for 
experimental parameters one is referred to the caption of that figure. 

illustrated by the experiments shown in figure 3, in which the core and the outer ring 
of the initial vortex were coloured with different dyes. 

Digitization of streakline photographs yielded quantitative information about the 
flow in the subsequent stages of the tripole formation process. This technique 
revealed that the tripolar vortex is characterized by an essentially continuous 
distribution of the vorticity, as can be clearly seen both on the vorticity contour plots 
(see figure 6 a )  and the scatter plots of vorticity versus stream function (see figure 12). 
Owing to its rather complicated geometry, no analytical model of the tripolar vortex 
(with a continuous distribution -of vorticity) has been formulated yet. An over- 
simplifying point-vortex model, in which the distributed vorticity of the core and its 
satellites are thought to be concentrated in three potential vortices, is capable of 
capturing one of the tripole’s prominent features, viz. the rotation of its alignment 
axis (see figure 20). 

The decay of the tripole, as apparent from its decreasing rotation speed and the 
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decrease of relative flow and vorticity, is a complicated process, being partially due 
to the spin-up/spin-down mechanism provided by the bottom Ekman layer, partially 
caused by lateral entrainment of ambient fluid into the satellite vortices. 

The calculations of the interpolated flow fields and related quantities were carried 
out by the use of software kindly provided by Drs Jog1 Sommeria, Than Nguyen Duc 
and Mathieu Mory (Madylam, Institut de MQcanique de Grenoble, France) and their 
cooperation is greatly appreciated. We are also much indebted to Piet Jonker for his 
help in adapting the numerical code to the mainframe computer of the University of 
Utrecht. One of us (R.C. K.)  gratefully acknowledges financial support from the 
working group on Meteorology and Physical Oceanography (MFO) of the 
Netherlands Organization of Scientific Research (NWO). 
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